Structure-based site-directed photo-crosslinking analyses of multimeric cell-adhesive interactions of voltage-gated sodium channel β subunits
نویسندگان
چکیده
The β1, β2, and β4 subunits of voltage-gated sodium channels reportedly function as cell adhesion molecules. The present crystallographic analysis of the β4 extracellular domain revealed an antiparallel arrangement of the β4 molecules in the crystal lattice. The interface between the two antiparallel β4 molecules is asymmetric, and results in a multimeric assembly. Structure-based mutagenesis and site-directed photo-crosslinking analyses of the β4-mediated cell-cell adhesion revealed that the interface between the antiparallel β4 molecules corresponds to that in the trans homophilic interaction for the multimeric assembly of β4 in cell-cell adhesion. This trans interaction mode is also employed in the β1-mediated cell-cell adhesion. Moreover, the β1 gene mutations associated with generalized epilepsy with febrile seizures plus (GEFS+) impaired the β1-mediated cell-cell adhesion, which should underlie the GEFS+ pathogenesis. Thus, the structural basis for the β-subunit-mediated cell-cell adhesion has been established.
منابع مشابه
Voltage-Gated Sodium Channels: Biophysics, Pharmacology, and Related Channelopathies
Voltage-gated sodium channels (VGSC) are multi-molecular protein complexes expressed in both excitable and non-excitable cells. They are primarily formed by a pore-forming multi-spanning integral membrane glycoprotein (α-subunit) that can be associated with one or more regulatory β-subunits. The latter are single-span integral membrane proteins that modulate the sodium current (I(Na)) and can a...
متن کاملUnnatural amino acid photo-crosslinking of the IKs channel complex demonstrates a KCNE1:KCNQ1 stoichiometry of up to 4:4.
Cardiac repolarization is determined in part by the slow delayed rectifier current (IKs), through the tetrameric voltage-gated ion channel, KCNQ1, and its β-subunit, KCNE1. The stoichiometry between α and β-subunits has been controversial with studies reporting either a strict 2 KCNE1:4 KCNQ1 or a variable ratio up to 4:4. We used IKs fusion proteins linking KCNE1 to one (EQ), two (EQQ) or four...
متن کاملDesign of Novel Drugs (P3TZ, H2P3TZ, M2P3TZ, H4P3TZ and M4P3TZ) Based on Zonisamide for Autism Treatment by Binding to Potassium Voltage-gated Channel Subfamily D Member 2 (Kv4.2)
The present research article relates to the discovery of the novel drugs based on Zonisamide to treatment of autism disease. In first step, the electronic properties, reactivity and stability of the said compound are discussed. To attain these properties, the said molecular structure is optimized using B3LYP/6-311++G(d,p) level of theory at room temperature. The frontier molecular orbitals (FMO...
متن کاملSplice Variants of NaV1.7 Sodium Channels Have Distinct β Subunit-Dependent Biophysical Properties
Genes encoding the α subunits of neuronal sodium channels have evolutionarily conserved sites of alternative splicing but no functional differences have been attributed to the splice variants. Here, using Na(V)1.7 as an exemplar, we show that the sodium channel isoforms are functionally distinct when co-expressed with β subunits. The gene, SCN9A, encodes the α subunit of the Na(V)1.7 channel, a...
متن کاملParallel homodimer structures of the extracellular domains of the voltage-gated sodium channel β4 subunit explain its role in cell–cell adhesion
Voltage-gated sodium channels (VGSCs) are transmembrane proteins required for the generation of action potentials in excitable cells and essential for propagating electrical impulses along nerve cells. VGSCs are complexes of a pore-forming α subunit and auxiliary β subunits, designated as β1/β1B-β4 (encoded by SCN1B-4B, respectively), which also function in cell-cell adhesion. We previously rep...
متن کامل